Accelerating Relational Clustering Algorithms With Sparse Prototype Representation

نویسندگان

  • Fabrice Rossi
  • Alexander Hasenfuß
  • Barbara Hammer
چکیده

In some application contexts, data are better described by a matrix of pairwise dissimilarities rather than by a vector representation. Clustering and topographic mapping algorithms have been adapted to this type of data, either via the generalized Median principle, or more recently with the so called relational approach, in which prototypes are represented by virtual linear combinations of the original observations. One drawback of those methods is their complexity, which scales as the square of the number of observations, mainly because they use dense prototype representations: each prototype is obtained as a virtual combination of all the elements of its cluster (at least). We propose in this paper to use a sparse representation of the prototypes to obtain relational algorithms with sub-quadratic complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activit...

متن کامل

K-svd: Design of Dictionaries for Sparse Representation

In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. In this paper we pr...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation

In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007